Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N,N-Bis(4-chlorophenylsulfonyl)succinamide dihydrate

H. Purandara, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 24 May 2012; accepted 30 May 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.046 ; w R$ factor $=0.120$; data-to-parameter ratio $=16.1$.

The asymmetric unit of the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains one half-molecule of N, N -bis(4-chlorophenylsulfonyl)succinamide, with a centre of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond, and one water molecule. The succinamide molecules are not directly connected via hydrogen bonds, but by hydrogen bonds via the water molecules.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Rodrigues et al. (2011), of N-chloroarylamides, see: Gowda \& Rao (1989); Jyothi \& Gowda (2004) and of N-bromoarylsulfonamides, see: Gowda \& Mahadevappa (1983); Usha \& Gowda (2006).

Experimental

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=501.34$
Monoclinic, $C 2 / c$
$a=33.349$ (2) A
$b=4.9737$ (4) A
$c=13.171$ (1) \AA
$\beta=90.660(7)^{\circ}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$S=1.06$
139 pa

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.55$ e \AA^{-3}
$\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$
Diffraction, 2009)
$T_{\text {min }}=0.784, T_{\text {max }}=0.939$
3837 measured reflections
2233 independent reflections
1906 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$

$$
\Delta \rho_{\min }=-0.49 \mathrm{e}^{\AA^{-3}}
$$

7 restraints

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(2)$	$1.90(2)$	$2.735(3)$	$178(3)$
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 3$	0.87	2.27	$3.137(4)$	177
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O}^{\mathrm{ii}}$	0.84	2.23	$2.941(3)$	142
${\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O}^{\mathrm{ii}}}^{2}$	0.84	2.58	$3.262(4)$	139

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $x, y+1, z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

HP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its INSPIRE Program. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC-BSR one-time grant to faculty.

[^0]
References

Gowda, B. T., Kumar, B. H. A. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.
Gowda, B. T. \& Mahadevappa, D. S. (1983). Talanta, 30, 359-362.
Gowda, B. T. \& Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303-3310.
Jyothi, K. \& Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Rodrigues, V. Z., Foro, S. \& Gowda, B. T. (2011). Acta Cryst. E67, o2179.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Usha, K. M. \& Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.

supplementary materials

Acta Cryst. (2012). E68, o2063 [doi:10.1107/S1600536812024725]

N, N-Bis(4-chlorophenylsulfonyl)succinamide dihydrate

H. Purandara, Sabine Foro and B. Thimme Gowda

Comment

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Rodrigues et al., 2011); N-chloroarylsulfonamides (Gowda \& Rao, 1989; Jyothi \& Gowda, 2004) and N-bromo-aryl- sulfonamides (Gowda \& Mahadevappa, 1983; Usha \& Gowda, 2006), in the present work, the crystal structure of N, N-bis(4-chlorophenylsulfonyl)succinamide dihydrate has been determined (Fig. 1).

In the two $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}$ central segments of the structure, the $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bonds are anti to the adjacent bonds, similar to that observed in N, N-bis(4-chlorophenylsulfonyl)-adipamide (I) (Rodrigues et al., 2011). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the torsion angles of $\mathrm{C} 2-\mathrm{C} 1-$ $\mathrm{S} 1-\mathrm{N} 1=91.0(2)^{\circ}$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1=-87.6(2)^{\circ}$. The molecule is bent at the S atom with the $\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$ torsion angle of $-70.0(2)^{\circ}$, compared to the values of $55.0(6)^{\circ}$ in (I).
The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{C}$ segment in the two halves of the molecule is $78.0(2)^{\circ}$, compared to the value of $83.5(2)^{\circ}$ in (I).
One of the water H -atoms exhibits bifurcated H -bonding with one of the O -atoms of SO_{2} group and the amide O -atom. A series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{W})$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S}$ and C$)$ intermolecular hydrogen bonds (Table 1) link the molecules into infinite chains running along c-axis (Fig. 2).

Experimental

Succinic anhydride (0.015 mole), N, N^{\prime}-dicyclohexylcarbodiimide (0.01 mole) and 4-dimethylaminopyridine (0.004 mole) were added to a solution of 4-chlorobenzenesulfonamide $(0.01 \mathrm{~mole})$ in dichloromethane. The mixture was strirred for 24 h at room temperature and set aside for completion of the reaction.. The reaction mixture was filtered to remove the byproduct N, N^{\prime}-dicyclohexylurea. The filtrate was diluted with water and then the organic layer was extracted. The latter was washed with water to remove the base and the succinic anhydride, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated to dryness. The residue was recrystallized to constant melting point from ethyl acetate $\left(163-165^{\circ} \mathrm{C}\right)$. The purity of the compound was checked and characterized by its infrared spectrum.
Plate like colorless single crystals used in X-ray diffraction studies were grown in ethyl acetate solution by slow evaporation of the solvent from its solution at room temperature.

Refinement

The H atoms of the water molecule were located in difference map and were refined as riding on their parent O atom. H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$. All H atoms were refined with their isotropic displacement parameter set to 1.2 times of the U_{eq} of the parent atom. The amino H atom was freely refined with the $\mathrm{N}-\mathrm{H}$ distance restrained to 0.86 (2) \AA. The displacement ellipsoid of the water O atom was restrained to an isotropic bahaviour.

Computing details

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
Molecular structure of the title compound, showing the atom labelling scheme with the displacement ellipsoids drawn at the 50% probability level.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

N, N-Bis(4-chlorophenylsulfonyl)succinamide dihydrate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=501.34$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=33.349$ (2) A
$b=4.9737$ (4) \AA
$c=13.171$ (1) \AA
$\beta=90.660(7)^{\circ}$

$$
\begin{aligned}
& V=2184.5(3) \AA^{3} \\
& Z=4 \\
& F(000)=1032 \\
& D_{\mathrm{x}}=1.524 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1880 \text { reflections } \\
& \theta=2.9-27.9^{\circ} \\
& \mu=0.53 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=293 \mathrm{~K}$
Plate, colourless

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and phi scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.784, T_{\text {max }}=0.939$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.120$
$S=1.06$
2233 reflections
139 parameters
7 restraints
Primary atom site location: structure-invariant direct methods
$0.48 \times 0.40 \times 0.12 \mathrm{~mm}$

3837 measured reflections
2233 independent reflections
1906 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-31 \rightarrow 41$
$k=-6 \rightarrow 2$
$l=-16 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0516 P)^{2}+3.9644 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C11	$0.23218(3)$	$0.6607(2)$	$0.16525(9)$	$0.0914(4)$
S1	$0.104840(19)$	$-0.08075(14)$	$-0.04102(5)$	$0.0398(2)$
O1	$0.11860(7)$	$-0.1623(5)$	$-0.13839(15)$	$0.0590(6)$
O2	$0.09204(6)$	$-0.2788(4)$	$0.02984(15)$	$0.0487(5)$
O3	$0.04604(6)$	$0.1896(4)$	$0.09543(13)$	$0.0474(5)$
N1	$0.06718(7)$	$0.1229(5)$	$-0.06616(16)$	$0.0398(5)$
H1N	$0.0665(9)$	$0.182(6)$	$-0.1257(16)$	0.048^{*}
C1	$0.14188(7)$	$0.1197(5)$	$0.01713(19)$	$0.0388(6)$
C2	$0.14276(8)$	$0.1472(6)$	$0.1219(2)$	$0.0480(7)$
H2	0.1245	0.0541	0.1616	0.058^{*}
C3	$0.17086(9)$	$0.3135(7)$	$0.1669(2)$	$0.0558(8)$

H3	0.1716	0.3346	0.2370	0.067^{*}
C4	$0.19760(9)$	$0.4469(7)$	$0.1072(3)$	$0.0565(8)$
C5	$0.19727(10)$	$0.4182(8)$	$0.0030(3)$	$0.0700(10)$
H5	0.2158	0.5097	-0.0363	0.084^{*}
C6	$0.16932(10)$	$0.2536(7)$	$-0.0421(2)$	$0.0584(8)$
H6	0.1688	0.2322	-0.1123	0.070^{*}
C7	$0.04271(7)$	$0.2394(5)$	$0.00549(19)$	$0.0356(5)$
C8	$0.01137(7)$	$0.4226(6)$	$-0.03950(19)$	$0.0401(6)$
H81	-0.0074	0.3163	-0.0794	0.048^{*}
H82	0.0242	0.5487	-0.0850	0.048^{*}
O4	$0.06513(12)$	$0.6735(8)$	$0.2409(2)$	$0.1206(13)$
H41	0.0606	0.5373	0.2014	0.145^{*}
H42	0.0704	0.7633	0.1885	0.145^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0731(6)$	$0.0863(7)$	$0.1142(9)$	$-0.0383(6)$	$-0.0254(6)$	$0.0188(6)$
S1	$0.0432(4)$	$0.0384(4)$	$0.0379(3)$	$0.0079(3)$	$0.0027(2)$	$-0.0028(3)$
O1	$0.0674(13)$	$0.0645(14)$	$0.0451(11)$	$0.0189(11)$	$0.0070(9)$	$-0.0130(10)$
O2	$0.0542(12)$	$0.0363(10)$	$0.0554(12)$	$-0.0005(9)$	$-0.0006(9)$	$0.0030(9)$
O3	$0.0513(11)$	$0.0546(12)$	$0.0365(10)$	$0.0092(9)$	$0.0058(8)$	$0.0037(9)$
N1	$0.0432(12)$	$0.0440(13)$	$0.0322(10)$	$0.0089(10)$	$-0.0001(9)$	$-0.0004(9)$
C1	$0.0340(12)$	$0.0399(14)$	$0.0425(13)$	$0.0055(11)$	$0.0039(10)$	$0.0063(11)$
C2	$0.0418(14)$	$0.0598(18)$	$0.0424(14)$	$-0.0101(13)$	$0.0040(11)$	$0.0073(13)$
C3	$0.0507(16)$	$0.067(2)$	$0.0496(16)$	$-0.0113(15)$	$-0.0025(13)$	$0.0042(15)$
C4	$0.0418(15)$	$0.0547(18)$	$0.073(2)$	$-0.0087(14)$	$-0.0095(14)$	$0.0147(16)$
C5	$0.0564(19)$	$0.081(3)$	$0.073(2)$	$-0.0213(18)$	$0.0103(16)$	$0.025(2)$
C6	$0.0558(17)$	$0.073(2)$	$0.0469(16)$	$-0.0075(16)$	$0.0102(13)$	$0.0139(15)$
C7	$0.0332(12)$	$0.0350(13)$	$0.0388(13)$	$-0.0021(10)$	$0.0010(10)$	$-0.0040(10)$
C8	$0.0348(12)$	$0.0436(14)$	$0.0419(13)$	$0.0021(11)$	$-0.0027(10)$	$-0.0035(12)$
O4	$0.180(3)$	$0.131(3)$	$0.0514(14)$	$-0.070(2)$	$0.0235(17)$	$-0.0267(17)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 4$	$1.739(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.367(4)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.426(2)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~S} 1-\mathrm{O} 1$	$1.426(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.380(5)$
$\mathrm{S} 1-\mathrm{N} 1$	$1.644(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.371(5)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.756(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{O} 3-\mathrm{C} 7$	$1.214(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1-\mathrm{C} 7$	$1.382(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.503(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.837(19)$	$\mathrm{C} 8-\mathrm{C} 8$	$1.506(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.381(4)$	$\mathrm{C} 8-\mathrm{H} 81$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.387(4)$	$\mathrm{C} 8-\mathrm{H} 82$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.379(4)$	$\mathrm{O} 4-\mathrm{H} 41$	0.8663
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{O} 4-\mathrm{H} 42$	0.8435
		$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl1}$	$118.5(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	$119.62(13)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl1}$	$119.9(2)$

$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$104.31(12)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$108.73(12)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$108.76(13)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	$105.65(12)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	$125.20(18)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$119(2)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$114(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$120.6(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$119.6(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$119.8(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.5(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.3(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.6(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$	
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$	$46.9(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$	$175.7(2)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-69.7(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$155.6(2)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$23.9(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-87.6(3)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-25.8(3)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-157.6(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$90.9(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.1(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-177.4(2)$

$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.3
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.7(3)$
C5-C6-H6	120.2
C1-C6-H6	120.2
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$	$122.2(2)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$124.3(2)$
N1-C7-C8	$113.5(2)$
C7-C8-C8	$113.0(3)$
C7-C8-H81	109.0
C8i-C8-H81	109.0
C7-C8-H82	109.0
C8-C8-H82	109.0
H81-C8-H82	107.8
H41-O $4-\mathrm{H} 42$	87.6

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5 \quad-0.3(5)$
178.8 (3)
0.5 (6)
-178.6 (3)
0.2 (6)
-1.0 (5)
177.5 (3)
-3.5 (4)
178.49 (19)
9.9 (4)
-172.1 (3)

Symmetry code: (i) $-x,-y+1,-z$.
Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O}^{4 i}$	$0.84(2)$	$1.90(2)$	$2.735(3)$	$178(3)$
$\mathrm{O} 4 — \mathrm{H} 41 \cdots \mathrm{O} 3$	0.87	2.27	$3.137(4)$	177
$\mathrm{O} 4 — \mathrm{H} 42 \cdots \mathrm{O} 22^{\mathrm{iii}}$	0.84	2.23	$2.941(3)$	142
$\mathrm{O} 4 — \mathrm{H} 42 \cdots \mathrm{O}^{\mathrm{iii}}$	0.84	2.58	$3.262(4)$	139

Symmetry codes: (ii) $x,-y+1, z-1 / 2$; (iii) $x, y+1, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5934).

